ChevronTexaco

Hyperspectral Remote Sensing A Tool for Oil Spill Planning, Response, and Restoration

Peter Samuels, Energy Technology Company

ChevronTexaco Has a Long History of Using Remote Sensing Technology

What is Remote Sensing?

 Use Sensors on Airplanes or Satellites to Obtain Detailed Regional Data Cost-Effectively and Rapidly

ChevronTexaco

Remote Sensing Allows Us to "See" Beyond the Visible Spectrum

How Hyperspectral Works: Receives Reflected Sunlight

ChevronTexaco

Hyperspectral Sensors Can Identify Oil From Other Materials

ChevronTexaco

Spectral Library: Every Material Has a Unique Response

Hyperspectral Concept

ChevronTexaco Business Interest in Environmental Remote Sensing

- Understand and Document Environmental Conditions Prior to Operations and Acquisitions
- Manage Existing Operations
- Document Property Condition Prior to Relinquishment
- Respond to Regulatory Agencies, Competitors, and NGOs

Key Technologies:

- Hyperspectral
- Interferometric Synthetic Aperture Radar (IFSAR)

ChevronTexaco Environmental Remote Sensing Surveys

Business Uses: Vegetation/Habitat Maps to Assist Site Selection

Nigeria

- 1999 Hyperspectral airborne imagery used to map vegetation and determine areas suitable for mangrove restoration.

Business Uses: Vegetation Stress and Environmental Liability

- Current Knowledge: Screen Properties
- Current Research: Identify Cause of Stress

Neighboring Facility North of Pascagoula

Impact to Vegetation

Stressed

Healthy

Business Uses: Identify and Plan Infrastructure

 Used to Identify Environmental and Infrastructure Features for Pipeline Planning and Siting

Business Use: Locate Hydrocarbon- Impacted Surfaces

- Screen for Potential Hydrocarbon Impacted Sites
- Requires Some Field Verification

Business Uses: Document the Restoration Actions

Richmond Ecological Restoration

Enlarged Area View of Restoration

Vegetation
Map

Restoration Site

Identify
Species and
Measure
Area

ChevronTexaco

Evolving Applications: Water Conditions

- Sediment or TSS
- Plant pigments
- Requires groundtruthing

Images courtesy
NASA/GSFC/MITI/ERSDAC/JAROS,
and U.S./Japan ASTER Science Team

Jerry Ritchie, Hydrology and Remote Sensing Laboratory, USDA Agriculture Research Service.

Oil slicks affect water in two important ways that are readily detected by Imaging Devices:

- Spectral: oil slicks increase reflectance in the visible through near-infrared portion of the electromagnetic spectrum.
- Textural: oil slicks smooth the sea surface, reducing the amount of reflected sun glint ("glitter") and radar backscatter.

Oil slicks affect water in two important ways that are readily detected by Imaging Devices:

- The type of detection (spectral vs. textural) depends on oil spill size, oil seepage rate, oil composition, sea state and illumination.
- Satellite imagery provides detailed data on the shape and size of natural oil slicks to pinpoint seep location and estimate seepage rates.
- Other oceanographic features (pollution, aquatic vegetation, phytoplankton blooms and coral spawn) may produce slicks on satellite imagery

- Typical Platforms
 - Airplane
 - Satellite
- Imaging
 - Radar
 - Multispectral
 - Hyperspectral
 - Other (SLAR,FLIR, Aerial, Digital Photography)
- Planning Periods
 - Pre-Spill
 - Long Term Response Actions
 - Post Spill

Oil Spill on Water – Radar Image

- Milford Haven, Wales, 22 February 1996
- Acquired by RadarSat (Canadian Radar Satellite Company) and analyzed by Canadian Center for Remote Sensing.
- "Sea Empress" supertanker spilled about 147,000 te crude oil.

Blue: Coastline Red: Oil Green: Oil with Dispersant

ChevronTexaco

Tool for Oil Spill Planning, Response & Restoration

- Pre-Spill Planning
 - Environmental Sensitivity Index
 - Establishing Baseline
- Emergency Response Phase
 - Radar Applications
 - Oil Trajectory Calibration
 - Hyperspectral Applications
 - Resources at Risk
 - Oil Spill Nature And Extent Mapping
- Post Emergency Response
 - Nature & Extent of Oil
 - Oil Spill NRDA Studies
 - Oil Spill Restoration Planning and Monitoring

Lessons Learned

- Multiple <u>Use</u> of Data
 - Serves many end users
 - Natural Resource Trustees
 - Public Affairs
 - Incident Command of Long Term Response
- Products
 - Take some time to get
 - Fastest Quick Look
 - Great Looking Maps
 - Detailed Research Opportunities
 - Misinterpretation

- Equipment
 - Availability during Emergency Phase Uncertain
 - Complex processing for images
 - Time consuming processing of data
- Best used for pre-spill and post spill
- If <u>available</u> during ER Phase can provide valuable images for remote areas
 - Operations can use to ID Boat ramps & Roads
 - Planning can use for Resources at Risk and SCAT

